Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Uniform Meaning Representation (UMR) is a semantic annotation framework designed to be applicable across typologically diverse languages. However, UMR annotation is a labor-intensive task, requiring significant effort and time especially when no prior annotations are available. In this paper, we present a method for bootstrapping UMR graphs by leveraging Universal Dependencies (UD), one of the most comprehensive multilingual resources, encompassing languages across a wide range of language families. Given UMR’s strong typological and cross-linguistic orientation, UD serves as a particularly suitable starting point for the conversion. We describe and evaluate an approach that automatically derives partial UMR graphs from UD trees, providing annotators with an initial representation to build upon. While UD is not a semantic resource, our method extracts useful structural information that aligns with the UMR formalism, thereby facilitating the annotation process. By leveraging UD’s broad typological coverage, this approach offers a scalable way to support UMR annotation across different languages.more » « lessFree, publicly-accessible full text available July 20, 2026
-
Cross-lingual transfer learning is an invaluable tool for overcoming data scarcity, yet selecting a suitable transfer language remains a challenge. The precise roles of linguistic typology, training data, and model architecture in transfer language choice are not fully understood. We take a holistic approach, examining how both dataset-specific and fine-grained typological features influence transfer language selection for part-of-speech tagging, considering two different sources for morphosyntactic features. While previous work examines these dynamics in the context of bilingual biLSTMS, we extend our analysis to a more modern transfer learning pipeline: zero-shot prediction with pretrained multilingual models. We train a series of transfer language ranking systems and examine how different feature inputs influence ranker performance across architectures. Word overlap, type-token ratio, and genealogical distance emerge as top features across all architectures. Our findings reveal that a combination of typological and dataset-dependent features leads to the best rankings, and that good performance can be obtained with either feature group on its own.more » « lessFree, publicly-accessible full text available May 1, 2026
-
The data and compute requirements of current language modeling technology pose challenges for the processing and analysis of low-resource languages. Declarative linguistic knowledge has the potential to partially bridge this data scarcity gap by providing models with useful inductive bias in the form of language-specific rules. In this paper, we propose a retrieval augmented generation (RAG) framework backed by a large language model (LLM) to correct the output of a smaller model for the linguistic task of morphological glossing. We leverage linguistic information to make up for the lack of data and trainable parameters, while allowing for inputs from written descriptive grammars interpreted and distilled through an LLM. The results demonstrate that significant leaps in performance and efficiency are possible with the right combination of: a) linguistic inputs in the form of grammars, b) the interpretive power of LLMs, and c) the trainability of smaller token classification networks. We show that a compact, RAG-supported model is highly effective in data-scarce settings, achieving a new state-of-the-art for this task and our target languages. Our work also offers documentary linguists a more reliable and more usable tool for morphological glossing by providing well-reasoned explanations and confidence scores for each output.more » « less
-
Many of the world’s languages have insufficient data to train high-performing general neural machine translation (NMT) models, let alone domain-specific models, and often the only available parallel data are small amounts of religious texts. Hence, domain adaptation (DA) is a crucial issue faced by contemporary NMT and has, so far, been underexplored for low-resource languages. In this paper, we evaluate a set of methods from both low-resource NMT and DA in a realistic setting, in which we aim to translate between a high-resource and a low-resource language with access to only: a) parallel Bible data, b) a bilingual dictionary, and c) a monolingual target-domain corpus in the high-resource language. Our results show that the effectiveness of the tested methods varies, with the simplest one, DALI, being most effective. We follow up with a small human evaluation of DALI, which shows that there is still a need for more careful investigation of how to accomplish DA for low-resource NMT.more » « less
-
Interlinear glossed text (IGT) is a popular format in language documentation projects, where each morpheme is labeled with a descriptive annotation. Automating the creation of interlinear glossed text would be desirable to reduce annotator effort and maintain consistency across annotated corpora. Prior research has explored a number of statistical and neural methods for automatically producing IGT. As large language models (LLMs) have showed promising results across multilingual tasks, even for rare, endangered languages, it is natural to wonder whether they can be utilized for the task of generating IGT. We explore whether LLMs can be effective at the task of interlinear glossing with in-context learning, without any traditional training. We propose new approaches for selecting examples to provide in-context, observing that targeted selection can significantly improve performance. We find that LLM-based methods beat standard transformer baselines, despite requiring no training at all. These approaches still underperform state-of-the-art supervised systems for the task, but are highly practical for researchers outside of the NLP community, requiring minimal effort to use.more » « less
-
Distributional approaches have proven effective in modeling semantics and phonology through vector embeddings. We explore whether distributional representations can also effectively model morphological information. We train static vector embeddings over morphological sequences. Then, we explore morpheme categories for fusional morphemes, which encode multiple linguistic dimensions, and often have close relationships to other morphemes. We study whether the learned vector embeddings align with these linguistic dimensions, finding strong evidence that this is the case. Our work uses two low-resource languages, Uspanteko and Tsez, demonstrating that distributional morphological representations are effective even with limited data.more » « less
-
The development of language technology (LT) for an endangered language is often identified as a goal in language revitalization efforts, but developing such technologies is typically subject to additional methodological challenges as well as social and ethical concerns. In particular, LT development has too often taken on colonialist qualities, extracting language data, relying on outside experts, and denying the speakers of a language sovereignty over the technologies produced.We seek to avoid such an approach through the development of the Building Endangered Language Technology (BELT) website, an educational resource designed for speakers and community members with limited technological experience to develop LTs for their own language. Specifically, BELT provides interactive lessons on basic Python programming, coupled with projects to develop specific language technologies, such as spellcheckers or word games. In this paper, we describe BELT’s design, the motivation underlying many key decisions, and preliminary responses from learners.more » « less
-
Canonical morphological segmentation is the process of analyzing words into the standard (aka underlying) forms of their constituent morphemes.This is a core task in endangered language documentation, and NLP systems have the potential to dramatically speed up this process. In typical language documentation settings, training data for canonical morpheme segmentation is scarce, making it difficult to train high quality models. However, translation data is often much more abundant, and, in this work, we present a method that attempts to leverage translation data in the canonical segmentation task. We propose a character-level sequence-to-sequence model that incorporates representations of translations obtained from pretrained high-resource monolingual language models as an additional signal. Our model outperforms the baseline in a super-low resource setting but yields mixed results on training splits with more data. Additionally, we find that we can achieve strong performance even without needing difficult-to-obtain word level alignments. While further work is needed to make translations useful in higher-resource settings, our model shows promise in severely resource-constrained settings.more » « less
-
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing and logic rules to guide a neural network, and minimizing human intervention. On test data, the model achieves promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.more » « less
-
Calzolari, Nicoletta; Kan, Min-Yen; Hoste, Veronique; Lenci, Alessandro; Sakti, Sakriani; Xue, Nianwen (Ed.)Uniform Meaning Representation (UMR) is a semantic labeling system in the AMR family designed to be uniformly applicable to typologically diverse languages. The UMR labeling system is quite thorough and can be time-consuming to execute, especially if annotators are starting from scratch. In this paper, we focus on methods for bootstrapping UMR annotations for a given language from existing resources, and specifically from typical products of language documentation work, such as lexical databases and interlinear glossed text (IGT). Using Arapaho as our test case, we present and evaluate a bootstrapping process that automatically generates UMR subgraphs from IGT. Additionally, we describe and evaluate a method for bootstrapping valency lexicon entries from lexical databases for both the target language and English. We are able to generate enough basic structure in UMR graphs from the existing Arapaho interlinearized texts to automate UMR labeling to a significant extent. Our method thus has the potential to streamline the process of building meaning representations for new languages without existing large-scale computational resources.more » « less
An official website of the United States government

Full Text Available